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LIST OF SYMBOLS

Az cross sectional area of rings

a distancc between rings for a cylindrical shell (see Fig. 1).
c, d the width and height of rings (see Fig, 1),

D ER3/12(1 - v3).

e, eccentricity of rings (see Fig, 1).
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modulus of elasticity.

E
| z
G shear modulus, i
§
h thickness of shell, R
122 moment of inertia of ring cross-section about its centroidal %
' axis. %
. 3
I, torsional constant of stiffener cross section, %
K, n material constants. i
- i
1
L length of shell Detween bulkheads, 3
Mx poment resultant acting on element, ?
Nx’ Nx¢ membrane force resultants acting on element, 3
N number of rings.
%
n number of half axial waves in cylindrical shell, ;
‘ Pcz classical buckling load for isotropic cylinder for ''classical
E simpie supports (SS3) :
A . 1/2 . <os -
D =
. ('cr)App Pc1[1+(A2/ah)] approximate critical load.
S (Pcr)SSS linear theory general instability for stiffend cylinder with

"smesred"’ stiffeners.,
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i

P i i i

exp experimental buckling load 3

(P, ) critical local buckling loads corresponding to SS3 and 3

L0C ss3; 554

s SS4 boundary conditions, respectively, 5

b1

(pLOC)"spring" critical local buckling load corrected for springs 5

-1/2 2 . ;

Q = [2.85 (1-v)"V/ (R/h)]ll safe ring spacings ,

R radius of cylindrical shell (see Fig. 1). g

t number of circumferential waves. {

texp experimental number of circumferential waves ;
u, v, w non-dimensicnal displacements,

u = (u*/R), v = (v*/R), w = (w*/R) (see Fig. 1).

1

x*, z%, ¢ axial coordinate along a generator, radial and circumferential ;

coordinates (see Fig. 1). f

{

) 2.1/2 2 :

YA = (1~ v (L/R)® (R/h) Batdorf shell parameter. :

ex,e¢ middle surface strains i

Neo GZItZ/aD %

n structural e Siciency :

A = (PR/%D) axial compression parameter for cylindrical shell, :

v Poisson's ratio

L ;

P "linearity" = Pexp/pcr ;

oy 0.1% ' stress at 0.1% of strain. 3

Ocr critical stress i

SS3 simple supports v = Nx = W= Mx =0 .

SS4 simple supports Uu=v=wasa Mx =0 2
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1, INTRODUCTION

e Pl Ot vk

In references [1] and [2] the buckling under axial compression of closely

W may ap b

spaced integrally ring-stiffened circular cylindrical shells, was studied ex-

perimentally, and the influence of stiffener and shell geometry on the appli-

RV

it

M cability on classical linear theory was investigated., The shells of [1]and[2]
were fabricated from two steel alloys with noticeably different mechanical pro-

perties (see Fig.8o0f [3]). The specimens differed in nominal dimensions, and

T a4t e Neae e 5 34 Y

represented shells with different R/h ratios. The experimental results of
]

[1]and[2] were correlated with the predicted "classical" linear buckling loads,

corresponding to §S3(N, = v = 0) sinply?supported boundary conditions (see [4]§[5] )
and with the results of other experimental investigations, [6] to {8]. The co-
rrelation with linear theory was shown there to be primarily affected by the
* i ‘ ring-area parameter (A,/ah).For A,/ah>.15 values of "linearity" (ratio of experi- ,

mental buckling load to the predicted one) above 70 % were achieved.

The present tests with specimens made of 7075-T6 aluminium alloy are a con-

tinuation of the earlier studies of {1] and [2] and aim at a better definition

¥oaah s g W SR

ik

of the effect of stiffuner geometry on the adequacy of linear theory. These tests

%%,

4 are especially concerned with the range of low values orf the ring-area parameter,
E A,/ah < 0.2 for which the prediztions of linear theory were found to be unsatis-

Co factory in [1] and [2]. The few earlier results in this range exhibited noticeable

SIS WSt s 4 T,

scatter, Hence,the present tests were carried out in order to verify the results

R

i cf [1]and[2] and to establish a lower bound for applicability of linear theory.
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As in earlier tests, care was taken in the preseat study to load the shells
througk their mid skin in order to avoid load eccentricity effects (see Fig. 4 of
{1} and [9] to [13].

Local buckling of the sub-shells between rings may also be the cause of low
values of "linearity'. This mode of failure was discussed in [1]. The discussion
of [1] deals only with short unstiffened shells with either 'classical" SS3 simple
supports boundary conditions or eilastic supports with zero axial restraint. The
end conditions of the sub-shells are, however, closer to the SS4(u = v = o) boundary
condition and hence for local buckling this type of boundary conditions should be con-

sidered.

b4

The general instability of the stiffened shells was again calcglated with
"smeared'stiffener theory of [4], which does not consider discreteness of the
rings - an effect found earlier to be usually negligible in ring-stiffened shells
designed to fail by general instability, see [1], ;7land [10]. The test results
in the present test program are compared with '"classical' SS3 critical loads,
which for ring stiffened shells are identical to SS4 critical loads, as was shown
in [S]. Local buckling was predicted by eqs. (1 ) & (7 ) of [1] as well as with

the analysis of [S5] for SS4 boundary conditicns,

In [1]and[2] the structural efficiency of ring-stiffened shells was studied,
by comparing the stiffened shells with isotropic ones of equivalent weight. Though

the calculations were basad on a non-conservative cri‘-~rion, which was shown there

{
to favour the equivalent shells, it was observed that the stiffened shells weve 4
always more efficient than the “equivaleat" isotropic ones. In [2] it was indicatec
that for iower vaiues of the arsa-parsmeter, (Az/ah), the higher values of structural
!
;
it
]
‘
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efficiency were achieved, in spite of the low values of "linearity" obtained

for these shells, Applying the same criterion and Eq.(15) of [1] the structural

efficiency is also studied here and it is again observed that stiffened shells
are more efficient than the'equivalent" isotropic shells.

The present test program, like the earlier ones [1] & [2] indicates that
the dominant stiffener parameter is the area parameter, (AZ/ah). For most shells
with values of (Azlah) > 0.3 buckling loads of 80 percent of those predicted

by "classical' linear theory,or higher, were obtained.
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2. TEST SET-UP AND PROCEDURE

N The test set-up for the present test program is shown in Fig. 2. The loading
frame is identical to that of [14]. Loading and test procedure, as well as ‘
specimen mounting are the same as in [3]} (for details see Section 4 and Fig. 4

of [3]).

Y

As in [1], [2], [3] and [14] the specimen are not clamped to the supporting
discs. They are just located between the lower disc and an identical top one.
[ . T.ie "heavy"end rings of the shell have thin ridges that represent a continuation
of the shell. (see Fig, 4 of [1]), to ensure that the load is applied through
r . the shell mid-surface and hence the end moments discussed in [9] to [13] are
avoided, The present test boundary conditions are therefore somewhere between

t“ . §S3 and SS4 boundary conditions (simple supports,

w=M=0

0 for SS3, and

4
e
L]
<
"
1)

u=v =0 for SS4) and probably never to SS4.

I TN & T U,

However, it was shown in [S5] that for the shel. and stiffener geometries of the test

T e TR

specimens g=ometries,the SS3 and SS4 boundary conditions yield identical critical

-

et :
SOTTIITRIMI S 74 T e TR w e A e

loads. The restraint to rotation is also not large and its effect for ring

stiffened shells under axial compression is negligible anyhow.
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About 48 gages were bonded to the surface of each specimen. Six of the
gages were located at the mid length of the shell. Their purpose is confirmation

of elastic behavior up to buckling and adjustments for uneven distribution of

St FRLe s s ARONRS L

the applied load., The remaining gages were oriented circumferentially and served
for detection cf local bending. All the gages assisted in detection of incipient
buckling, but as in the earlier tests([1], [2], [3] and [14]), it was observed
that the circunferential gages are better for this purpose because of their i
greater sensitivity to bending. Strain gage readings were recorded on a B § F
multichannel strain plotter and attempts were made to obtain southwell plots from
the strain records (see bibliography in [3] and [14]). For this purpose again

the circumferential gages are more effective (see [1] to [3]).

The thickness of the specimens was measured carefully at many points
prior to each test. The shell was divided into 12 segments and measuvements
of every subshell and ring were token along the meridian lines dividing the

shell into segments,
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3. TEST SPECIMENS

26 integrally ring stiffened shells were tested in the present program.
The geometry of the shells is defined in Fig. 1 and their dimensions and zeo-

metrical parameters are presented in Table 1,

All the specimens were designed to ensure predomination of general insta-
bility and elastic tuckling. The specimens were machined from 7075-T6 Aluminium
alloy tubes (10" in diameter and 1/2" wall thickness) with mechanical properties,

that may be approximated by a Ramberg-Osgood stress-strain relation [15]

€ = 6'E + K(o/E)"
for whnich
E = 0.75 x 10% kg/m® = 1.06 x 10 p.s.i.

(o} = 54 kg/mm2 = 7,67 x 104 p.S.i.

(see also Fig, 5 and Section 3 of [14]).

The machining process is similar to that described in [i], excepc for the
mounting of the blank on the mandrel and releasing of the finished stiffened shell

from it, whi:h is described in [14].

The precision of the 7075-T6 specimens did not differ from that obtained
for the stesl specimens of [1]and[2], though they were machined from a softer
material. The machining procedure of the present specimens involved the same
methods of cutting and control as in [1]and[2] and hence similar accumulated

errors were introduced in the present shells, For the present shells the worst
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deviation in shell thickness for a few siells was up to 5% of the minimum skin

thickness., The average deviation wzs, however, within 3% of the minimum thickness.

The aim of the present test program is the study of the effect of stiffener
geometry on the ''linearity" obtained. Hence the stiffener-parameters: (ez/h),
(Az/ah), and consequently (Izz/ah3) and n,, Were varied. To assure elastic buckling
the specimens were designed to fail <t stresses less than half the ";;eld" strength,

99,18’ of the shell material.

N U g DRIV e o S L B, O e

e e 4 —




4, EXPERIMENTAL RESULTS AND DISCUSSION

The experimental buckling loads are giver in Table 2, These loads are
correlated with the predicted critical loads corresponding to SSZ boundary con-
ditions (see Section 1); or for externally ring stiffened shells, which buckle

in = axisymmetric mode (see {4]) with the simple formula

Pes = [3(1-v3)1" Y2 2m2e[1 + (A2/ah)]1/2 - PCI(AR)I/Z

r . These predictions are also presented in Table 2 as (Pcr)583 and (Pcr)App

to obtain the"linearity", o =P__ /P The correlation with linear theory,
y

2xp’ “cr’

represented by the "linearity" p, is shown in Fig. 3 versus the ring-area

parameter, (Az/ah), in Fig. 4 versus the ring spacing (a/h) and in Fig. 5
~-1/2

versus a combination of these two parameters (a/h){1 + (Azlah)] Y/ . These

figures also include the results of other investigations, [1], [2] and [6]

to [8].

Like in [1] and [2], Fig 3 indicates that the "linearity" is primarily in-
;, fluenced by the area parameter, (Az/ah). It is observed that even for 'weak"

stiffening represented by low values of the area parameter, (AZ/ah):O.IS,

a reasonably high linearity of 70 percent and above, is obtained. This conclusion

SO

is confirmed by the results of the other studies [1], [2] and also [6] to [8],
- also presented in Fig. 3. It may be noted also that the present results fall within
: the scatter band of the other studies. Fig. 3 also shows that increasing of area

} i parameter does not improve the "linearity", whereas the weight of the shell increased

noticeably. In other words, whereas the gain in "linearity" is only a few percent,

) the weight of the sheli is directly projortional to the increase in the area par-metes

* » ” o . 4 % " -t e
SNt i o T AR Y il e SIS,
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(Az/ah). Hence, there is a loss in structural efficiency for heavily stiffened

shells to be discussed later. Fig. 3 shows that the "linearity" decreases noticeably . ;
in the range (Az/ah) < 0,15 and the values of 'p' obtained in this range are

very similay to those of unstiffened shells. Similar results appear in Fig. 12 :

of [1] and Fig. 4 of [16] for ring-stiffend conical shells and yielded similar

conclusions.,

In Fig . 4 the effect of ring spacing (a/h) on the "linearity" is examined.
In spite of considerable scatter a decrease in '"linearity" can be discerned in
this figure with increase in ring spacing (a/h). This influence is apparently
contradicted by the results of [8], but it should be noticed that [8] deals with
very heavily stiffened shells in comparison with most of the shells studied here

and in the other investigations, presented in Fig. 4.

P e

Correlation may be improved, if instead of ring spacing, (a/h), the com-

s as

bination (a/h)[1 + (Az/ah)]'l/2 is considered, as in Fig. 5. Here the trend of ]

decrease in "linearity" with increase of the above mentioned combined parameter

’ ' is more noticeable. Even the results of [8] almost fall within the scatter band

of the present results and the studies of [1], [2] and [6] tc [8].

PR Y

Figs. 3 to 5 indicate that the dominant parameter, for applicability of

W d ey e

linear theory is the ring area parameter (Az/ah), and linear theory is even adeguate

R S

B for prediction of buckling loads in relatively ''weak” stiffened shells. An area

i
3

parameter of (AZ/ah) T 0.15 represents a lower bound for applicability of linear

theory.
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The structural efficiency of ring stiffened shells is now studied

S T

by Eq. (15) of [1] K

[+ (R/100h) 11/

n=p

R TTN AP Y ALY

Z
(8g)

T The resultc are given in Table 2 and are shown in Fig. 6 versus the area

N o

parameter, (Az/ah). Fig.6 indicates a clear and siginificant decrease in efficiency
with increase of ring area-parameter, (AZ/ah). The "'equivalent weight' isotropic

shell becomes more efficient for relatively low "values" of this parameter, (Azlah)ZG.e,

D e o T SN T S T Y TN

{ in spite of the high "lianearity" achieved for thesz shells., Fig. 6 shows clearly

that weakly stiffened shells are more efficient, in spite of their relatively low

Vs

; : ) “linearity"., From a design point of view the important point to be noted is that

Lt

attempts to achieve very high values of "linearity" carry weight penalties which

A aae
inl

result in an inefficient structure, whereas for low values of the area parameter,

Ry

2
1
; #
§ Az/ah > 0.2 values of efficiency of 150% or more are obtained. Fig. 3 shows that §
g even for these low vaiues of (Az/ah), a "linearity" of 70 to 90 percent may be ;
F z
5 obtained, It should be remembered that Eq. (15) of [1] acturlly favours the :
£ 5
A equivalent weight isotropic shel’l, so that in reality the efficiency cf the stiffened §
£ 1
% shells is even higher than that represented in Fig. 6 and Table 2.
o
b In the design of the specimens, the ring-spacing which ensures local '"linear"
3
o behavior of the subshells was calculated wit. the criterion for axisymmetric buckling;
p 7
§

Eq. (3) of [1]

o AN
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(a/n) < [2.85(1 -v2)~M2(g/n)1t/2

Safe spacings are presented by Q in Table 2 and a comparison of these Q
with the measured values of (a/h) in Table 1, shows :hat a1l the tested shells

fulfill the requirement (a/h) < Q.

The local critical loads of the subshells were calculaied with aid of

Eq. (1) of [1]

2,4
t&y
Pcr Pcl[l + (122'°/1%)] /0.702 70 » where

Py = 301+ v2)1 7Y% 2

and arc also given in Table 2 by (pLoc)SSS" For most of the tested specimens

t'.ese values exceeded those predicted for gemeral instability, except shclls AR-4a,
AR-4b, AR-7, AR-8b, AR-8c and AR-15 (see Table 2). As mentioned in [1] the cri-

tical loads (PLoc)SSS are rather conservative since they correspond to the relatively
weak SS3 boundary conditions. Actually the S84 or some elactically restrained boundary
conditions are more applicable o the subshells. Hence, the critical loads for

elastically restrained boundary conditions, Eq. (7) of [1].

2
(p. /EWD) = 21 [~ » SRB) o kesepey m/my?@/L)]  and
cr 12(1-v3) (R/h)  (nR)?

oo
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for 554 boundary conditions were also caiculated for these shells and are presented

in Table 2 by (P ) and (P

i c 3
Loc’ spring respectirely, These celeulations also

Lcc)SS4
assure general instability for these shells satisfying the condition for general

instability

pgeneral instability < plccal instability

Hence, predicted failure by gencral instability was verified foxr all the test spe-

cimens,

The attempts to apply the modified Southwell method as in [i] to [3],[14]
and [16] {see [3] for detailed bibliography) did not yield aﬂy meaningful results.
The gages bonded to the surface of the shells behaved almost linearly up to buckling
and hence practically no data for the Southwell plots could be extracted from the

load-strain curves recorded by the gages during the various stages of loading.

Some typical postbuckling patterns are shown in Fig. 7. For the weakly stiffened
shells AR-la and AR-2a the two-tier diamond shape pattern extends over the whole
length of tne shell, As the stiffening becomes heavier in shells AR-10b and AR-1lla,
the pattern again has two tiers of diamonds but the diamonds are narrower and
do not cover the whole length of the shell, These patterns are similar to those

obtained in Fig. 5 ot [1].

As discussed in [1], an axisymmetric mode of uLuckling is expected for externally
ring-stiffend sheils. No such modes were observed at the tests, However, it seems

ch on _nitial mode can be confirmed from the strain records.
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As in [1], one notices that the straim gages become "lively'" at many locations
simultaneously close to buckling, The gages which are located in rows over complete
circumferences deviate in each row unidirectionally, indicating axisymmetric
deformation. The strain gages readings indicate a complete pattern of incipient
buckling covering the shole shell, as assumed by theory and which the usual
diamond pattern contradicts. The initiation of an apparently axisymmetrical

mode may also be seen-in Fig, 8, where it was attempted to photograph this process.

Fig. 8 shows the growth of surface deflections of shell AR-14a at stages of

loading very close to buckling (P = 1500 kg; 2000 kg and 2100 kg). In this

shell the critical load obtained in the test was 2200 kg, exactly as predicted

ST AL LT W ks b o N ¢ it i ) T A et e ;g S e A b e

by linear theory. The growth of a periodic and apparently axisymmetric mode

R T R

along a generator appears very clearly in this figure.
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